
for the initial state to be converted into the transition state, and thus into the final 
state. The dependence of reaction rate on activation energy is exponential; thus, 
a small change in activation energy can make a very big difference in reaction 
rate. For comparison, enzymatic catalysis potentially can speed up the rates of 
reactions by as much as 10^^ times. 

How much energy is actually available? At 30°C the average amount of 
heat energy available is about 0.025 eV per molecule, but the energy is unevenly 
distributed, and some substrate molecules will have more and some will have less. 
Those that have more wil l often have enough to get to the transition states made 
accessible by enzymatic catalysis. 

Section 9.5 

Rates of Chemical Reactions 
Stoichometric rules are not sufficient to determine the equilibrium position of a 
reversible chemical reaction; but adding reaction rate principles makes the calcu-
lation possible. Primarily, rate equations were designed to foretell the speed of 
specific reactions, and, in this capacity, they predict an exponentially decaying 
speed, as reactants are consumed, characterized by the reaction's rate constant. 
But in fact, the equilibrium position of a reversible reaction is reached when the 
rate of formation equals the rate of dissociation. Therefore equilibrium positions, 
as well as reaction rates, are determined by a combination of the forward and 
reverse rate constants. 

Irreversible (uni-directional) reactions are limited by the first reactant to be 
exhausted. 

J 
Consider the irreversible bimolecular reaction 

A+B —> X + r , (9.5.1) 

in which one molecule each of reactants A and B chemically combine to make 
one molecule each of products X and Y. It follows that the rate of disappearance 
of reactants equals the rate of appearance of products. The Conservation of Mass 
principle takes the form 

dX dY dA dB 
^^^^^ ^^^^^^^^^^ 

dt ~ dt dt dt ' 

I f MQ denotes the initial number of molecules of species M , by integrating each 
member of this chain of equalities from time 0 to time r, we get 

X{t) -Xo = Y{t) -Yo = -A{t) +Ao = -B{t) + B^. (9.5.2) 

Equation (9.5.2) gives the amount of each species in terms of the the others, 
so i f any one of them is known, then they all are. But in order to know the 
amount of any one of them, we must know how fast the reaction occurs. This is 
answered by the Law of Mass Action (due to Lotka): The rate of at which two or 
more chemical species simultaneously combine is proportional to the product of 
their concentrations. Letting [M] denote the concentration of species M , the mass 
action principle states that the rate at which product is formed is equal to 

(9.5.3) 

where the constant of proportionality A: is characteristic of the reaction. 
So far our considerations have been completely general, but now we must 

make some assumptions about where the reaction is occuring. We suppose this 
to occur in a closed reaction vessel, such as a beaker with a fixed amount of 
water. In this case, concentration is the number of molecules divided by, for all 
species, the same fixed volume of medium.'^ We allow the possibility that one 
or more of the products, X or r, be insoluble and precipitate out of solution. 
This is one of the main reasons that a bimolecular reaction may be irreversible. 
For such an insoluble species, "concentration" means the ratio of its number of 
molecules over the volume of the medium, even though it is not dissolved. While 
a product may precipitate out without disturbing the reaction, the reactants must 
remain dissolved. We now use the notation m(?), to mean this extended notion of 
concentration of species M. 

Combining the mass action principle with equation (9.5.2) we get 

— = kab 
dt (9.5.4) 

k{aQ -h Xo - x){bo + XQ - x) 

with initial value x{Q) = XQ. The stationary points of equation (9.5.4) are given 
by setting the right-hand side to zero and solving to get (see Section 2.4) 

x = ao-^xo, or x = bo-^xo. (9.5.5) 

The first of these says that the amount of X will be its original amount plus an 
amount equal to the original amount of A. In other words, A wil l be exhausted. 
The second equation says the reaction stops when B is exhausted. 

Suppose, just for argument, that ao < bo. Then also ao + XQ < bo -\- XQ. 
While x{t) < ao -h Xo, the right-hand side of equation (9.5.4) is positive, therefore 
the derivative is positive, so x increases. This continues until x asymptotically 

By contrast, for an open reaction vessel, such as the heart or a chemostat, the concentrations 
are determined by that of the inflowing reactants. 
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reaches ao -hxo, whereupon the reaction stops. The progression of the reaction as a 
function of time is found by solving equation (9.5.4) which is variables separable: 

dx 
{ao +xo- x){bo -\-xo- x) 

kdt. 

Note the similarity of this equation to the Lotka-Voterra system of Section 4.4 
The left-hand side can be written as the sum of simpler fractions 

1 1 1 
{ao -f- Xo - x){bo -\-xo- x) bo- aoao + xo-x 

1 1 
bo — aobo-\- Xo — X 

Thus equation (9.5.4) may be rewritten as 

1 1 
ao+ Xo— X bo+ Xo — X 

dx = {bo — ao)kdt 

Integrating gives the solution 

ln(ao + Xo - x) + ln(^ö + xo - x) = (^o - ao)kt -h q 

In 
^0 + Xo - X 

ao-\- Xo— X 
{bo - ao)kt + q, 

where q is the constant of integration. Now this may be solved for in terms of x, 

X K+xo)Qg (^^ '>-^»)^^- (Z7o+xo) 
Q^{k)-ch))kr _ I (9.5.6) 

where Q = e"^ is a constant. This equation is graphed in Figure 9.5.1. For the 
purpose of drawing the figure, we choose the constants, solve the resulting differ-
ential equation and draw its graph as follows: 

> k:=1; a0:=2; b0:=3; x0:=1/2; 
> dsolve({diff(x(t),t)=k*(aO+xO-x(t))*(bO+xO-x(t)),x(0)=xO}, {x(t)}); 
> simpIifyC); 
> x:=unapply(rhs("),t); 
> plot([t,x(t),t=0..4],t=-1..3,tickmarks=[3,3],labels=['f,'x(t)']); 

Figure 9.5.1 A typical solution to equation (9.5.4). 

The result is 

1 -15+14^-^ 
X[t) = . 

Example: Suppose 2 moles of silver nitrate (AgNOs) are mixed with 3 moles of 
hydrochloric acid (HCI). A white precipitate, silver chloride, is formed, and the 
reaction tends to completion, 

A g N 0 3 + H C l AgCU-f-HNOs. 

From above, asymptotically, the reaction stops when the 2 moles of silver ni-
trate have reacted, leaving 2 moles of silver chloride precipitate and 1 mole of 
hydrochloric acid unreacted. 

Kinetics for reversible reactions work the same way. 

Now assume reaction (9.5.1) is reversible 

A + B X-\-Y (9.5.7) 



with the reverse reaction also being bimolecular. This time there is a backward 
rate constant, as well as a forward one, k]. From the mass action principle 
applied to the reverse reaction, we have 

rate of conversion ofX -\- Y = k-\[X] [Y]. 

Under normal circumstances, the forward and backward reactions take place in-
dependendy of each other and consequendy the net rate of change of any species, 
say X, is just the sum of the effects of each reaction separately. It follows that the 
net rate of change in X is given by 

dx 
dt 

• 

(conversion rate of A - f B) — (conversion rate of X-l-Y) 

ki[A][B] - k.^[X][Y], (9.5.8) 

k\ {ao -\-xo- x){bo + XQ - x) - k-]x{yo - xo+x), 

where equation (9.5.2) has been used in the last line. Circumstances under which 
the forward and backward reactions are not independent include precipitadon of 
one of the species, as we have seen above. Another occurs when one of the 
reactions is highly exothermic. In that case, condidons of the reacdon radically 
change, such as the temperature. 

The analysis of equaüon (9.5.8) goes very much like that of equadon (9.5.4). 
The stadonary points are given as the soludons of the ^ = 0 equadon 

0 = ^1 {ao + Xo - x)(^o + Xo - x) - k-\x{yo - xo + x) 

= {ki - k-i)^ - {ki {ao + bo + 2xo) - f ^ - l (yo - xo)) x (9.5.9) 

+ ki {ao -\-xo){bo +xo) 

As one can see, if ki ^ k-\, this is a quadradc equadon and therefore has two 
roots, say x = a, and x = (3, which may be found using the quadratic formula, 
\^{—h ± — 4ac). The right-hand side of equadon (9.5.8) thus factors into 
the linear factors 

dx 
— = (̂ l - A:_,)(x - a)(x - P). (9.5.10) 

Again, just as above, this variable separable differendal equadon is easily solved 
but the nature of the solution depends on whether the roots are real or complex, 
equal or distinct. To decide about that, we must examine the discriminant of 
the quadratic formula, b^ — 4ac. By direct substitution of the coefficients from 
equation (9.5.9) into the discriminant and then simplifying, we get 

b'^-4ac = k^i{ao-bo)^+2kik-i{ao-\-bo+2xo){yo-xo)-{-ki^{yo-xo)^. (9.5.11) 

The first and last terms are squares and so are positive (or zero). We see that, i f 
yo ^ Xo, then the discriminant is always positive or zero and the two roots are 
real. Since X was an arbitrary choice, we can always arrange that yo ^ xo, so we 
assume this is so. 

Unless the initial concentrations are equal, ao = bo and yo = xo, the roots 
wil l be distinct. We assume without loss of generality that 

a < [ 3 . (9.5.12) 

Then, in a similar way to the derivation of equation (9.5.6), the solution of equa-
tion (9.5.10) is 

In ( ^ = (p - a){ki - k-x)t + q 

where q is the constant of integration. This may be solved in terms of x. 

x = ^ — ^ (9.5.13) 
l-Qe rt 

where Q is a constant and 

r^{^-a){ki-k.i). 

I f the discriminant is zero, then P = a and in that case the solution is 

X - a 
^ = (^1 - k-i)t-\-q, 

or 

1 
X = a -

{ki -k-i)t-{-q 

where q is again the constant of integration. 

Exercises 

1. Suppose that A -\- B C, that the initial concentrations of A, B, and C are 
1/2, 1/3, and 0, respectively, and that the rate constant is k. 
a. Show that this leads to the differential equation in z{t) = [C{t)] given by 

z{0) = 0. 

b. Solve this equation 



c. Show that the corresponding equadon forx(r) = [A{t)] is 

d. Solve this equadon. Show by adding the soludons x and z that the sum 
is constant. 

e. At what dme is 90% of the steady state concentradon of C achieved? 
f. Suppose that k is increased 10%. Now reworlc part e. 

2. Suppose that A + 5 ^ C+Z) is a reversible reaction, the inidal concentrations 
of A and B are 4/10 and 5/10, respectively, and that the inidal concentrations 
of C and D are 0. Take ki = 10 and k-i = 5/2. 
a. Show that this leads to the differential equation 

y = 1 0 ( 0 . 4 - 3 ; ) ( 0 . 5 - y ) - ^ , y(0)=0. 

b. What is the equilibrium level of [C] ? Draw two graphs, one where k-
5/2 and one where k-i = 5/4. 

1 

Section 9.6 

Enzyme Kinetics 

Enzymes serve to catalyze reactions in living systems, enabling complex chemical 
transformations to occur at moderate temperatures, many times faster than their 
uncatalyzed counterparts. Proteins, serving as the catalysts, are first used and then 
regenerated in a multi-step process. Overall, the simplest enzyme-catalyzed re-
actions transform the enzyme's specific substrate into product, possibly with the 
release of a by-product. Referred to as enzyme saturation, these reactions are typ-
ically rate limited by the amount of enzyme itself. The degree to which saturation 
occurs relative to substrate concentration is quantified by the Michaelis-Menten 
constant of the enzyme-substrate pair. 

Enzyme catalyzed reactions are normally rate-limited by enzyme saturation. 

The importance of enzyme catalyzed reactions along with a general description 
of the biochemical principles of enzyme catalysis was given in Section 9.4. Here 
we wil l consider an enzyme, E, which acts on a single substrate, S, and converts 
it to an alternate form which is regarded as the product P. The enzyme performs 
this function by temporarily forming an enzyme-substrate complex, C, which then 
decomposes into product plus enzyme: 

S-f-E C 

C — > P + E 
(9.6.1) 

The regenerated enzyme is then available to repeat the process.'-^ Here we will 
work through the mathematics of enzyme kinetics. The general principles of 
chemical kinetics discussed in the previous section apply to enzyme kinetics as 
well. However, due to the typically small amount of enzyme compared to sub-
strate, the conversion rate of substrate to product is limited when the enzyme 
becomes saturated with substrate as enzyme-substrate complex. 

As in the previous section, we let m denote the concentration of species M. 
The forward and reverse rate constants for the first reaction will be denoted k\ and 
k-\ respectively while the rate constant for the second wil l be taken as ko_. The 
rate equations corresponding to the reactions (9.6.1) arê "̂  

d^ 
'dt 
ds 
'dt 
de^ 
'di 
dp 
~dt 

k\es — k-\c — k2C 

k\es -\- k-\c 
(9.6.2) 

k\es -\- k-\c -\- k2C 

koc. 

Note that complex C is both formed and decomposed by the first reaction and de-
composed by the second. Similarly, enzyme E is decomposed and formed by the 
first reaction and formed by the second. The first three equations are independent 
of the formation of product P, and so, for the present, we can ignore the last equa-
tion. As before, we denote by subscript 0 the initial concentrations of the various 
reactants. In particular, e^ is the initial, and therefore total, amount of enzyme 
since it is neither created nor destroyed in the process. 

By adding the first and third equation of system (9.6.2) we get 

dc de 
dt dt 

Integrating this and using the initial condition that CQ = 0, we get 

e^ CQ-C. (9.6.3) 

We may use this to eliminate e from system (9.6.2) and get the following reduced 
system: 

dc 

— = kis{eo - c) - {k-i -f- k2)c 

ds 
— = -kis{eQ - c) + k-ic. 
at 

'^Compare this scheme to Figure 9.4.3. S+E constitutes the initial state, C is the transition state 
and P+E is the final state. 

''^The units of are different than those of k-1 and k2 since the former is a bimolecular constant 
while the latter are uni-molecular. 



In Figure 9.6.1 we show some solutions of this system of differential equadon. 
For the purpose of drawing the figure, we take the constants to be 

> k1:=1/10; km1:=1/10; k2:=1/10; eO:=4/10; (km1+k2)/k1; 

The equations are non-linear and cannot be solved in closed form. Consequently 
we use numerical methods to draw these graphs. It should be observed that the 
level S, graphed as s{t), drops continuously toward zero. Also, the intermediate 
substrate C, graphed as starts at zero, rises to a positive level, and gradu-
ally setdes back to zero. In the exercises we establish that this behavior is to be 
expected. 

> with(plots): with(DEtools): 
> enz:=[diff(c(t),t)=k1 *s(t)*(eO-c(t))-(km1 +k2)*c(t), 

diff(s(t),t)=-krs(tr(eO-c(t)) + kmrc(t)]; 
> J:=DEplot2(enz,[c,s],0..100,[0,0,8/10],stepsize=1, 

seen [t,s],labels=['f,'']): 
> K:=DEplot2(enz,[c,s],0..100,[0,0,8/10],stepsize=1, 

scene=[t,c],Iabels=['t','']): 
> L:=textplot({[75,0.3/s(t)'],[60,0.1 /c(t)']}): 
> display({j,K,L}); 

Figure 9.6.1 Solutions for Equadon (9.6.2) 

In the exercises we provide techniques to draw what may be a more interest-
ing graph: Figure 9.6.2. In particular, we draw graphs of s{t), p{t), and e{t). The 
first two of these are, in fact, the most interesting as they demonstrate how much 
of S is left and how much of P has been formed. The addition of a graph for e{t) 
illustrates that during the intermediate phase, some of the enzyme is tied up in the 
enzyme-substrate complex, but as the reaction approaches equilibrium, the value 
of e{t) returns to its original value. 

From Figure 9.6.1, notice that the concentration of complex rises to a rel-
atively invariant ("effective") level which we denote as CEff. This is found by 
setting ^ = 0 in system (9.6.4) and solving for c, 

0 = k\s{eo — c) - {k-\ + k2)c 

or 

k-\+k2 
s[eQ - c) = c. 

/C] 

The combination ku of rate constants 

Figure 9.6.2 Soludons for Equation (9.6.1) 



is known as the Michaelis-Menten constant; it has units moles per liter. Solving 
for c above we get 

SCQ 

which is seen to depend on the amounts of substrate S. But i f s is much larger than 
ku, then the denominator of equadon (9 .6 .6) is approximately just s and we find 
the invariant level of complex to be 

CEff ~ CQ. (9 .6 .7 ) 

Thus, most of the enzyme is ded up in enzyme-substrate complex. 
By the velocity v of the reacdon we mean the rate, ^ , at which product is 

When 
substrate is large, we may use CEff as the concentradon of complex and derive the 
maximum reaction velocity 

vmax = heo- (9 .6 .8 ) 

Likewise, from equations (9 .6 .6) and (9 .6 .8) , the initial reaction velocity, VQ, is 
given by 

dp 
dt 

J seo 
f—Q ku ~\~ s 

(9 .6 .9 ) 

vmax-y 
ku+ s 

In this, s is the initial substrate concentration, s = [S]o. Equation (9 .6 .9) is 
the Michaelis-Menten equation, the rate equation for a one-substrate, enzyme-
catalyzed reaction. Its graph is shown in Figure 9.6.3. 

The value of ku for an enzyme can be experimentally found from Fig-
ure 9.6.3. At low substrate concentrations kM + s ^ kM and so the graph ap-
proximates the line VQ = (vmax/^A/)^ near = 0. On the other hand, at high 
substrate concentrations the reaction rate approaches vmax asymptotically be-
cause, at these concentrations, the reaction is essentially independent of substrate 
concentration. By experimentally measuring the initial reaction rate for various 
substrate concentrations, a sketch of the graph can be made. Working from the 
graph, the substrate level which gives ^vmax initial velocity is the value of ^ M , 
seen as follows. 
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> fcn:=s->vmax*s/(kM+s); vmax:=10: kM:=15: 
> crv:=plot([x,fcn(x),x=0..150],x=-20..160,y=-1..12,tickmarks=[0,0]): 
> asy:=plot(10,0..150,tickmarks=[0,0]): 
> midline:=plot(5,0..15.3,tickmarks=[0,0]): 
> vertline:=plot([15.3,y,y=0..5],tickmarks=[0,0]): 
> a:=.0: A:=0.0: b:=13: B:=13*vmax/kM: 
> slope:=x->A*(x-b)/(a-b)+B*(x-a)/(b-a): 
> slopeline:=pIot(slope,a..b): 
> txt1:=textplot({[130.5,10.3,'-vmax-'],[-10.5,5,'1/2 vmax']},align=LEFT): 
> txt4:=textplot({[b+14,B+0.5,'slope = vmax/kM']}): 
> txt5:=textplot({[15.3,-0.3,'-kM-']},align=BELOW): 
> with(plots): 
> display({crv,asy,midIine,vertline,slopeline,txt1 ,txt4,txt5}); 

max 

kjvi initial substrate concentration s 

Figure 9.6.3 Michaelis-Menten plot 

From equation (9 .6 .9) with VQ = vmax/2, 

1 vmax^ 
;:Vmax — 7 ;—, 
2 ku+ s 

and, solving for gives 



Thus, we interpret as the substrate concentration at which the reaction 
rate is half maximal. By inverting the Michaelis-Menten equation (9.6.9) we get 

1 _ kM-\-s 

Vo vmax-y 

(9.6.10) 

1 ^ 1 
Vmax s Vmax 

This is the Lineweaver-Burk equation and shows that a least squares fit may be 
made to the double-reciprocal plot of ^ vs ^. This has the advantage of allowing 
an accurate determination of vmax • 

Another transform of the Michaelis-Menten equation that allows the use 
of least squares is obtained from equadon (9.6.10) by muldplying both sides by 
vovmax; this yields 

Vo 
Vo = - ^ M — + Vmax- (9.6.11) 

s 

A plot of Vo against vo /[S] is called the Eadie-Hofstee plot; it allows the determi-
nation of as its slope and vmax as its intercept. 

Exercises 

1. Our intuition for the long-range forecast for (9.6.1) is that some of the re-
actants that move from S to C move on to P. But the assumption is that the 
second reaction is only one-way so that the products wil l never move back 
toward S}^ This suggests S will be depleted. We conjecture that ^oo = 0 
and Coo = 0. We confirm this with the notions of stability that we studied in 
Section 2.5. 
a. Find all the stationary solutions by observing that setting ^ = 0 and 

^ = 0 leads to the equations 

k]s{eo — c) — {k-] -h k2)c = 0 

—k\s{eo — c) -\- k-\c = 0. 

While it is clear that s — 0 and c = 0 is a solution, establish that this is 
the only solution for the equations as follows: 

> solve(k1 *s*(eO-c)-(km1 +k2)*c=0,c); 

^^In the context of a free energy diagram (Figures 9.4.2 and 9.4.3), the one-way nature of the 
process C —>• P is due to a lack of sufficient free energy in the environment to cause the reverse 
reaction P ^ C. 

Substitute this into the second equation and set the resulting equation 
equal to zero. Argue that s must be zero and c must be zero. 

> subs(c=" ,-k1*s*(eO-c) + km1*c); 
> numer(" )/denom(" " ) = 0; 

b. Establish that 5" = c = 0 is an attracting stationary point by finding the 
linearization about this only stationary point. (Recall Section 4.4.) 

> jacobian([krs*(e0-c)-(km1+k2)*c, -krs*(eO-c) + kmrc],[c,s]); 
> subs({c=0,s=0},"); 
> eigenvals("); 

c. Verify that the eigenvalues of the linearization are 

((A:_i 4- ̂ 2 + k^eo) ± 7 ( ^ - 1 + / : 2 + ^i^o)^ - 4A:2^i^o) 

and that both these are negative. Argue that this implies { 0 , 0 } is an 
attracting stationary point for {c{t)js{t)}. 

2. Draw the graph of Figure 9.3.3. With Maple V. release 3, we use a pro-
gram called ODE from the share package to get numerical solutions for this 
systems. Here is the syntax for using this program and for drawing Figure 
9.3.3. The routine uses a Runge-Kutta package by calling the program with 
r u n g e k u t t a h f . Remove the final ƒ from the call command i f the machine 
on which the program is running does not have a math co-processor. 

> with(share): readshare(ODE,plots); with(plots): 
> k1:=1/10: k2:=1/10: km1:=1/10: s0:=8/10: eO:=4/10: 
> rss:=(t,s,c,p,e)->-k1*e*s + km1*c; 

rsc:=(t,s,c,p,e)->k1*e*s - (km1+k2)*c; 
rsp:=(t,s,c,p,e)->k2*c; 
rse:=(t,s,c,p,e)->-k1*e*s + (km1 + k2)*c; 

> init:=[0,sO,0,0,eO]; 
> output:=rungekuttahf([rss,rsc,rsp,rse],init,1,100): 
> J:=plot({makelist(output,1,2),makelist(output,1,4), 

makelist(output,1,5)},view=[-10..100,0..0.8]): 
> K:=textplot({[90,0.14/s(t)'],[90,0.42/e(t)'],[68,0.55,'p(t)'], 

[-10,0.5,'moles ']},view=[-10..100,0..0.8]): 
> display({j,K}); 

* 

3. Draw the graph of the solution c{t) for in equation (9.3.2) with constants 
chosen so that / C M ^ 1 and S = 10. The point to observe is that c{t) ~ eo for 
large values of t. 
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